選舉預測方法比較:社群大數據與民意調查實證研究

點閱:1

並列題名:Comparison of election prediction methods : an empirical study of social big data and polls.

其他題名:社群大數據與民意調查實證研究

作者:羅莉婷著

出版年:2021[民110]

出版社:元華文創

出版地:臺北市

格式:EPUB 流式

EISBN:9789577112088 EPUB

分類:社會學  

附註:附錄: 社群大數據於選舉預測研究綜整

  • 原紙本書價:500 元
  • 電子書價:350 元


  • 所謂線上的社群大數據,
    是否能比傳統民意調查方法,
    以更低成本、即時
    又準確地預測線下的投票行為呢……
     
    摘要
     
    預測獲勝者一直係選舉過程最受熱議話題,而民意調查則是探詢投票意向較常見測量方式,然民調預測失準案例頻傳,又面臨如家戶電話回應率低、「唯手機族」人口增加及年輕族群涵蓋率不足等調查誤差問題,加上社群媒體逐漸影響政治及選舉活動,促使國外紛紛興起運用社群大數據預測選舉浪潮,亦已累積相當豐碩文獻,回顧國內卻缺乏較完整、系統性發展。因此,本書試以我國2020年總統大選為個案,探討社群大數據方法應用於臺灣選舉可行性,經檢閱文獻共彙整出測量社群民意三大變數(9個指標)納入分析架構:「數量」、「文本情緒」及「社群用戶特性描述」等相關變數,並採取量化研究方法,同時觀察各社群指標與民調在不同選舉時期預測趨勢,最後比較兩者預測誤差變化,總共獲得185次預測結果,並進一步透過「整合途徑」模式,嘗試結合各社群指標及傳統民調與社群大數據兩種不同類型資料比較分析。
    綜觀本書發現,主要以「社群用戶特性描述」相關指標表現與最後選舉得票數具較大關聯,其中「臉書粉絲專頁貼文按讚數」變數之總體平均絕對誤差最小,且優於民調測量誤差,成為本次社群大數據預測選舉最具指標性變數。另外,大部分經整合後之測量變數預測表現,確實相對單一變數預測成效好,惟傳統民調與社群大數據兩者資料合併預測結果不如原先預期,極可能受到社群用戶、民調受訪者與實際選民等人口特性差異而影響預測成效,一方面也透露出社群大數據方法目前最大挑戰──即如何回應社群用戶代表性問題。
    基於上述研究結果,茲提出幾點建議作為未來研究延伸:首先,增加時間權重方法,瞭解選民對近期選舉事件關注程度;其次,依社群用戶人口特性加權處理,改善社群用戶與實際選民之間差異;第三,探討調查方法精進以及使用社群網絡分析方法,並針對不同方法進行廣泛性跨國比較。最後,本書並非關注在線上社群大數據能否取代傳統民調方法,而是期望藉由此種間接、非侵擾模式來洞察選民真實態度,作為補充、改善選舉民調偏誤情形,且即時又快速的另一種衡量民意方式。

    作者介紹
     
    羅莉婷
     
    畢業於國立臺中技術學院商業設計科、國立臺北大學公共行政暨政策學系碩士,現任新北市政府暨所屬機關學校人事主任,曾從事平面設計、文案撰寫等相關工作,曾獲臺北市政府100年及101年績優民政人員,以研究「大規模開放式線上課程」獲行政院105年度人事行政研究發展徵文獎甲等獎,106年度及108年度分別探討大數據及區塊鏈應用於公務人力等議題,獲行政院精進人事業務建議獎勵特優獎。

    • 封面
    • 版權
    • 作者介紹
    • 書籍簡介
    • 提要內容
    • 圖目錄
    • 表目錄
    • 附錄一:社群大數據於選舉預測研究綜整(依研究年代排序)